عکاسی دیجیتال
عکاسی دیجیتال به فرآیند ثبت تصاویر به وسیلهٔ دریافت و ثبت نور برروی سطح حساس به نور سنسور الکترونیکی گفته می‌شود. الگوهای نوری بازتابیده شده یا ساطع شده از اشیاء بر روی سطح حساس به نور سنسور تأثیر می‌گذارد و باعث ثبت تصاویر می‌گردد.آسانی نسبی استفاده، سرعت بالای بازدید، انتقال و چاپ و نیز در بسیاری از موارد، کیفیت برتر، تعدادی از ویژگی‌های متمایزکنندهٔ عکاسی دیجیتال هستند.






در عکاسی دیجیتال، سنسور (حسگر) وظیفهٔ ثبت تصویر را برعهده دارد و هیچکدام از سنسورها بصورت مستقیم قادر به شناسایی رنگ‌ها نیستند و فقط می‌توانند شدت روشنایی نور را ثبت کنند. هر سنسور از میلیون‌ها سنسور ریز حساس به نور تشکیل شده و هرکدام از این حسگرهای ریز قالباً یک پیکسل از عکس نهایی را ثبت می‌کند. سازندگان این سنسورها با قرار دادن فیلترهای سرخ، سبز و آبی (رنگ‌های اولیه) روی تک تک آنها با استفاده از الگوهایی مانند الگوی بایر می‌توانند به پردازشگرهای دوربین قابلیت آن را بدهند که با کمک الگوریتم‌های درون‌یابی (اینترپولیشن) و مقایسه ارقام ثبت شده توسط ریز سنسورهای مجاور، رنگ واقعی هر پیکسل را حدس بزنند. دوربین‌هایی که قابلیت ذخیرهٔ عکس را بصورت خام دارا هستند، اجازه می‌دهند که این بخش نهایی شناسایی رنگ‌ها روی رایانه شخصی انجام شود و این به کاربران اجازه می‌دهد که آزادی بیشتری در ویرایش عکس نهایی داشته باشند.

یکی از خصوصیاتی که در بازاریابی دوربین‌های دیجیتال بر آن تاکید می‌شود تعداد کل پیکسل‌های یک دوربین است. این رقم که با واحد مگاپیکسل یا میلیون پیکسل شمارش می‌شود، از راه ضرب تعداد پیکسلهای افقی و عمودی یک سنسور محاسبه می‌شود.

برای مثال، دوربینی که حسگری دارای ۳هزار پیکسل افقی و ۲هزار پیکسل عمودی باشد، یک دوربین ۶ مگاپیکسلی خواهد بود. با وجود آنکه این رقم در برخی موارد می‌تواند شاخص خوبی برای مقایسه کیفیت تصویر دوربین‌های دیجیتال باشد، این رقم در اکثر موارد می‌تواند گمراه کننده نیز باشد. کیفیت نهایی یک تصویر دیجیتال موثر از متغیرهای بیشتری مانند نوع سنسور، مساحت سنسور، اندازه لنزهای ریز روی هر پیکسل و قدرت تمرکز لنز می‌باشد.







هیستوگرام

هیستوگرام (بافت‌نگار) به نموداری گفته می‌شود که فراوانی عناصری که در محور افقی آن قرار دارند را در محور عمودی نشان می‌دهد. هیستوگرام عکس، شدت نور را، از کمترین مقدار تا بیشترین مقدار، در محور افقی و تعداد پیکسل‌های هرکدام از آن‌ها را در محور عمودی نشان می‌دهد.

توجه به هیستوگرام، راه بسیار خوبی برای کنترل نوردهی دوربین و تصویر بوجود آمده‌است.

بافت‌نگار به عنوان یک عملگر کاربردی مصطلح است و یکی از ابزارهای مفید و کارآمد در دوربین‌های عکاسی دیجیتال به شمار می‌رود.






تجهیزات عکاسی

عکاسی نیز همچون دیگر هنرها و علوم، نیاز به ابزار و تجهیزات خاص خود دارد. برخی از ابزارها در ایجاد عکس نقش اساسی دارند و نبود آن‌ها فرآیند عکسبرداری را ناممکن می‌سازد و بعضی دیگر به عکاس کمک می‌کنند تا علاوه بر سرعت عمل و صرفه‌جویی در زمان، تصویر بهتری را نیز ثبت کند.
دوربین آنالوگ

دوربین آنالوگ طی سالیان طولانی از وضعیت ابتدایی خود که همان اتاق تاریک بود، تکمیل و به حالت فعلی در آمده‌است. اولین دوربین‌ها فاقد مسدودکننده و دیافراگم بودند. لنز آن دوربین‌ها کاملاً ابتدایی، و انحراف خطی شدید و سایه و یا تاریکی در گوشه‌ها داشتند. لزوم مسدود کننده از زمانی احساس گردید که سرعت مواد حساس عکاسی (نورگیری) افزایش یافت و زمان نوردهی به کسری از ثانیه رسید. مسدود کننده‌ها در انواع مختلفی تولید شده و برای کارهای متعدد مورد استفاده قرار گرفتند. مسدودکننده‌های برگی در تمامی سرعت‌های فلاش کارایی داشتند، ولی سرعت آنها کم بود.

مسدود کننده‌های سطح کانونی هم با وجود سرعت بالا، در ثبت تصویر از سوژه‌های متحرک، بسته به جهت حرکت پره‌ها (افقی یا عمودی) تصویر را دچار اعوجاج می‌کردند. با ورود عکاسی به جامعه و دنیای خبر و ورزش، طلب برای سرعت‌های بالای مسدود کننده، برای ثبت وقایع سریع افزایش یافت. سرانجام کارخانه مینولتا در سال ۱۹۹۸ دوربین ماکسیوم ۹ خود را با سرعت مسدود کننده ۱/۱۲۰۰۰ ثانیه به جهان معرفی کرد، که خود انقلابی در این زمینه محسوب می‌شود.






فیلم

فیلم عکاسی که عمده تاریخ عکاسی مربوط به پیدایش و تکامل آن می‌باشد، یک سطح حساس عکاسی است که از شیشه‌های کلودیونِ تر شروع و تا ورق شفاف پلاستیکی که از جنس پلی‌استر یا نیترو سلولوز یا سلولوز استات است ادامه پیدا کرده‌است. این ورق با یکی از هالیدهای نقره که اکثراً برومور نقره و یک ماده ژلاتینی که برای چسباندن نمک مورد نظر بر سطح ورقه پلاستیکی ساخته شده، بوجود می‌آید.

فیلم عکاسی دارای انواع گوناگونی است. از فیلم‌های عادی نور روز تا ریورسال‌های نور شب.






دوربین دیجیتال

دوربین دیجیتال یک دستگاه الکترونیکی است که برای گرفتن عکس و ذخیرهٔ آن، به‌جای فیلم عکاسی از حسگرهای حساس به نور معمولا از دستگاه جفت‌کنندهٔ بار (CCD) یا نیم‌رسانای اکسید فلزی مکمل (CMOS) استفاده می‌کند و تصویر گرفته شده توسط سنسور، طی چند مرحله برای استفاده به حافظهٔ دوربین فرستاده می‌شود.

دوربین‌های دیجیتال همانند دوربین‌های آنالوگ دارای یک منظره‌یاب، لنز برای کانونی کردن تصویر بر روی یک وسیله حساس به نور، وسیله‌ای برای نگهداری و انتقال چند تصویر گرفته شده در دوربین و یک جعبه در بر گیرنده تمام این تجهیزات می‌باشد.

در دوربین دیجیتال فرآیند ثبت تصویر با استفاده از حسگر تصویر در حافظه انجام می‌گیرد و اجازه می‌دهد که تصاویر در شکل دیجیتال ذخیره شوند و به سرعت و بدون نیاز به عملیات خاصی (نظیر عملیات شیمیایی بر روی فیلم) در دسترس باشند.






لنز

لنز استوانه‌ای حاوی مجموعه‌ای از عدسی است که نور را از خود عبور داده و به درون دوربین هدایت می‌کند و باعث می‌شود که تصویر به صورت واضح بر روی فیلم عکاسی یا گیرنده تصویر منعکس شود. کیفیت عکس، بیش‌تر به لنز بستگی دارد تا دوربین. لنز دوربین‌های کامپکت قابل تعویض نیستند، اما لنز دوربین‌های تک‌لنزی بازتابی (SLR) قابل تعویض‌اند.

قدرت و کیفیت لنزها به عوامل گوناگونی بستگی دارد که مهم‌ترین آن‌ها فاصله کانونی و عدد دیافراگم است. فاصله کانونی برحسب میلیمتر است و معرف زاویه دید لنز است. هرچه فاصله کانونی لنز کمتر باشد، لنز زاویه دید بازتری دارد و به اصطلاح لنز، وایدتر است و هرچقدر فاصله کانونی بیش‌تر باشد زاویه دید کوتاه‌تر خواهد بود.






مبدل‌ها

در دوربین‌های غیر SLR، نمی‌توان لنز را عوض کرد و در نتیجه، بزرگنمایی لنز محدود به بزرگنمایی اولیهٔ دوربین عکاسی خواهد بود. در دوربین‌های SLR امکان تعویض لنز وجود دارد ولی هزینهٔ آن زیاد است. روش دیگر این است که برای تغییر محدودهٔ بزرگنمایی و فاصله کانونی از مبدل استفاده کرد؛ مبدل‌ها انواع مختلف و کارکردهای گوناگونی دارند. که مهم‌ترین آن‌ها، مبدل‌های تله، حلقه گسترش فاصله کانونی و عدسی‌های درشت‌نما می‌باشند.






فلاش

فلاش وسیله‌ای است که جهت نورپردازی صحنه‌های تاریک و کم نور و نقاطی که از شرایط نوری نامطلوبی برخوردارند، از آن استفاده می‌شود.

فلاش یک منبع نور کوچک قابل حمل است که می‌تواند نوری قوی برای یک چندم ثانیه از خود بیرون دهد. فلاش‌ها معمولاً از طریق باتری یک بار مصرف یا قابل شارژ تغذیه می‌شوند ولی بعضی از آنها را می‌توان از طریق یک آداپتور به برق شهر نیز وصل نمود.

فلاش‌ها در حالت کلی، دو نوع کاربر دارند؛ یک کاربرد آن افزایش نور محیط در زمانی که نور اصلی برای عکاسی کافی نیست یا شرایط عکاسی را سخت می‌کند، است و کاربرد دیگر آن، اصلاح نور محیط در زمانی که نور اصلی کافی است، ولی ترکیب خوبی به وجود نمی‌آورد است.






فیلتر

فیلترها در عکاسی، صفحاتی از جنس شیشه، پلاستیک و یا ژلاتین با قاب فلزی و یا بدون قاب و بصورت ورقی هستند، که در جلوی دهانهٔ لنز یا منبع نور قرار داده می‌شوند. انتهای لنز دوربین‌های تک‌لنزی بازتابی، رزوه است و می‌شود فیلتر را به آن پیچ نمود.

فیلترها انواع مختلفی دارند و هرکدام در شرایط خاصی مورد استفاده قرار می‌گیرد که از آن‌ها می‌توان به فیلتر فرابنفش (جهت جذب پرتو فرابنفش خورشید و محافظ فیزیکی لنز)، فیلتر پولارایزر (جهت تغییر در نور و تاثیر بر کنتراست رنگ‌ه) فیلتر مادون قرمز (جهت عکاسی مادون قرمز)، فیلتر کاهنده نور (جهت کاهش شدت نور) و فیلتر اسکای‌لایت (جهت جلوگیری از نفوذ پرتو فرابنفش) اشاره کرد.






پایه‌ها

سه‌پایه

سه پایهٔ عکاسی، وسیله‌ای است که می‌توان دوربین را روی آن نصب کرد و به کمک آن عکس گرفت. یک استفادهٔ سه پایه، جلوگیری از لرزش دوربین در نوردهی‌های زیاد است. همچنین به‌وسیلهٔ سه‌پایه می‌توان از تار شدن عکس که بر اثر تکان‌خوردن احتمالی دوربین ایجاد می‌شود، جلوگیری کرد.







تک پایه

تک‌پایه وسیله‌ای است که دوربین عکاسی به آن متصل می‌شود و لرزش را تا حدی از بین می‌برد. از تک پایه‌ها در عکاسی حیات‌وحش، عکاسی ورزشی، عکاسی از موزه‌ها و هنگامی که چرخش سریع دوربین در جهت افقی برای عکاسی مورد نیاز است، مانند ثبت عکس‌های پنینگ، بیشتر استفاده می‌شود.






اصطلاحات فنی

عمق میدان

عمق میدان عبارت است از گستردگی محدوده‌ای که جلوتر یا عقب‌تر از سوژهٔ اصلی، فوکوس هستند و مقدار معینی از میدان دید لنز که در آن تصاویر بصورت کاملاً واضح ثبت می‌شوند. هرچه فاصلهٔ سوژه از دوربین افزایش یابد، عمق میدان نیز افزایش خواهد یافت.







تعادل سفیدی

تعادل رنگ سفید (به انگلیسی: White Balance) یا تعادل رنگ عبارت است از به روند اصلاح رنگ‌ها که در این روند تن رنگ سفید که ممکن است تمایل به برخی رنگ‌های دیگر داشته‌باشد تبدیل به سفیدِ کامل می‌شود و سایر رنگ‌ها نیز به تناظر آن، اصلاح می‌شوند.






نوردهی

به مقدار نوری که به فیلم عکاسی یا گیرنده تصویر می‌رسد، نوردهی گفته می‌شود. این مقدار ترکیبی از نور موجود، عدد دیافراگم و سرعت شاتر است.







فوکوس

به تنظیم فاصلهٔ سوژه تا دوربین فوکوس گفته می‌شود. اشیایی که در فاصلهٔ فوکوس یا نزدیک به آن قرار داشته باشند واضح و سایر اشیا، محو می‌شوند.فاصله کانونی

فاصله کانونی، به فاصلهٔ مرکز اپتیکی لنز و مرکز کانونی آن گفته می‌شود. این فاصله معمولا برابر با فاصله فاصله مرکز اپتیکی و سنسور است و تغییر فاصله کانونی باعث افزایش و یا کاهش بزرگنمایی می‌شود. هنگام افزایش بزرگنمایی روی یک شی، فاصله کانونی عوض می‌شود و هر چه سوژه دورتر باشد فاصلهٔ کانونی بیشتر می‌شود. در شرایط یکسان عکسی که با فاصله کانونی کمتر گرفته شده باشد، کیفیت بهتری دارد.







سرعت فیلم

سرعت فیلم یا ایزو عددی است که جهت اندازه‌گیری حساسیت فیلم عکاسی یا حسگرهای الکترونیکی استفاده می‌شود. در دوربین آنالوگ هرچه حساسیت فیلم بیش‌تر باشد نیاز به نور کمتری خواهد بود ولی کیفیت عکس‌ها نیز کاهش پیدا می‌کند. در دوربین دیجیتال، حساسیت دوربین، مقدار تقویت خروجی حسگر را تعیین می‌کند. هرچه خروجی بیشتر تقویت شود، نیاز به نور کمتر خواهد بود ولی افزایش تقویت، باعث افزایش نویز و در نتیجه کاهش کیفیت می‌شود.







زاویه دید

زاویهٔ دید، زاویه‌ای است که لنز می‌تواند صحنهٔ روبه‌روی خود را ببیند؛ اگر خطی فرضی از لنز به دو انتهای منظره‌ای که دیده می‌شود ترسیم کنیم، زاویهٔ بین این دوخط، زاویهٔ دید خواهد بود. زاویهٔ دید را فاصلهٔ کانونی مشخص می‌کند و هرچه فاصلهٔ کانونی بیشتر شود، زاویهٔ دید کوچک‌تر و هرچه فاصلهٔ کانونی کمتر بشود، زاویهٔ دید بزرگ‌تر می‌شود.






ترکیب‌بندی

عکاسی مشتمل بر دو بخش هنر و مهارت است. ترکیب‌بندی از یک‌سو با مسائل زیبایی‌شناسی سر و کار دارد؛ اینکه چگونه می‌توان تصاویر زیباتری بوجود آورد و از سوی دیگر، ترکیب‌بندی می‌تواند در بیان ایدهٔ عکاسی نیز موثر باشد و به عنوان مثال عکاس می‌تواند با ترکیب‌بندی مناسب، قسمت‌های مهم تصویر را برجسته کند و توجه بیننده را به قسمت‌هایی جلب کند که هدف اوست. در واقع ترکیب‌بندی عبارت است از قراردادن اجزای عکس در کنار یکدیگر. قسمت زیادی از عکاسی، بدون دوربین است؛ عکاس باید بیندیشد، ریزبین و نکته‌سنج باشد و از همه مهم‌تر، دغدغه داشته‌باشد و پیش از عکسبرداری، صحنه را به خوبی در ذهنش مجسم کند.







نسبت یک‌سوم

قسمت‌های مختلف کادر از نظر بصری، ارزش یکسانی ندارند، برخی قسمت‌ها توجه بیش‌تری را جلب می‌کنند و به همین دلیل باید از آن‌ها استفادهٔ بیش‌تری کرد. قرار گرفتن عناصر مهم تصویر در محل برخورد خطوط افقی و عمودی که تصویر را به سه قسمت تقسیم می‌کنند، بیش‌ترین توجه را جلب می‌کند. اگر طول و عرض عکس، با استفاده از خطوط فرضی به سه قسمت تقسیم شوند، این خطوط در چهار نقطه که به آن‌ها نقاط طلایی گفته می‌شود یکدیگر را قطع می‌کنند و بهتر است موارد کلیدی و مفهومی تصویر، بر روی این نقاط و خطوط ثبت شود. زیرا قرار دادن سوژه روی این نقاط تلاقی، باعث ایجاد هماهنگی و جلب توجه بیش‌تر می‌شود.







نقطهٔ کانونی و خطوط راهنما

نقطهٔ کانونی قسمتی از سوژهٔ اصلی عکس و اولین نقطه‌ای است که نگاه بیننده را به خود جلب می‌کند. هر عکس باید یک نقطهٔ کانونی اصلی داشته باشد. عکس‌هایی که یکدست هستند و هیچ قسمتی از آن‌ها گیرایی و کشش بیش‌تری نسبت به سایر بخش‌ها ندارند، معمولا عکس‌های خوبی نیستند و نمی‌توانند ارتباط خوبی با بیننده برقرار کنند.

عکس می‌تواند چند نقطهٔ کانونی فرعی هم داشته باشد تا بعد از اینکه نگاهِ بیننده متوجهٔ نقطه کانونی اصلی شد، توجه او را به سمت خود جلب کنند. همچنین، عکس باید نگاه بیننده را هدایت کند؛ نگاه از نقطه کانونی شروع می‌شود و با کمک خطوط راهنما به قسمت‌های دیگر عکس کشیده می‌شود.

در بسیاری از مناظر عناصری وجود دارند که می‌توانند خطوطی راهنما باشند. نرده‌ها، خط افق، درختان و بسیاری دیگر از عناصر این‌چنینی، می‌تواند مورد استفادهٔ عکاس قرار گیرد.






انواع عکاسی

عکاسی معماری

عکاسی معماری، شاخه‌ای از عکاسی است که در آن از آثار معماری و ساختمان‌ها عکسبرداری می‌شود.

در عکاسی معماری، دو فاکتور زاویه دید و نوع لنز مهم‌اند، زیرا معمولاً آثار معماری بزرگ هستند و عکاس هم نمی‌تواند به اندازهٔ کافی از آن‌ها فاصله بگیرد؛ به همین دلیل لازم است که زاویهٔ دید لنز زیاد باشد، یعنی فاصله کانونی کم باشد تا عکاس بتواند همهٔ ساختمان و بنا را در کادر جا دهد.







عکاسی اجسام بی‌جان

عکاسی اجسام بی‌جان شاخه‌ای از هنر عکاسی است که به ثبت تصویر از اشیاء بی‌جان و معمولاً غیر متحرک و اشیا محیط پیرامون می‌پردازد. عکاسی از اجسام بی‌جان در حقیقت جزو سبک‌های مشکل عکاسی محسوب می‌شود، عکاسان این سبک باید توانایی نورسنجی دقیق را داشته و از ذوق ترکیب‌بندی بالایی برخوردار باشند. هدف اصلی در عکاسی طبیعت بی‌جان، بیان ایده و مفهومی خاص، به ساده‌ترین و روشن‌ترین شکل ممکن است.

وجه تمایز اصلی این سبک با سایرسبک‌ها، در حقیقت به چیدمان صحنهٔ عکس مربوط است؛ چیدمان در حقیقت همان چیدن صحنه عکس و ساختن صحنه است؛ در این سبک، عکاسان در حقیقت بیشتر عناصر عکس را می‌سازند تا اینکه صرفاً سرگرم عکاسی باشند.







عکاسی نجومی

عکاسی نجومی شاخه‌ای از عکاسی است که به وسیلهٔ تلسکوپ و با روش‌های مختلف از ستارهها و سیارات عکسبرداری می‌کند. زمان نوردهی این عکس‌ها معمولاً از چند دقیقه تا چند ساعت، متفاوت است. البته با دوربین عکاسی و با هر لنزی می‌توان از ستاره‌ها و سیاره‌های نزدیک عکس گرفت.







عکاسی ورزشی

عکاسی ورزشی، شاخه‌ای از عکاسی است که در آن از صحنه‌های ورزشی و ورزشکاران عکسبرداری می‌شود. در این نوع عکاسی، تجهیزات و ابزارها نقش مهمی دارند زیرا سوژه متحرک است و عکاس هم از صحنه دور است بنابراین داشتن لنزهای قدرتمندی همچون تله و زوم لازم است. همچنین دوربین هم باید قابلیت استفادهٔ پیاپی شاتر را داشته باشد.






عکاسی پرتره

عکاسی پرتره، شاخه‌ای از عکاسی است که در آن از چهرهٔ انسان عکسبرداری می‌شود. عکاسی پرتره انواع مختلفی دارد، اما در همهٔ آنها تمرکز عکس بر روی چهرهٔ اشخاص است. پرتره تنها یک عکس ساده نیست، بلکه نمایانگر افکار، اخلاق و خصوصیات فردی سوژه‌است.

معمولاً فاصله‌های کانونی لنزهای مورد استفاده برای عکاسی پرتره بخاطر بار روانی لنزهای واید و نرمال، از دو برابر نرمال به بالا و بخاطر کاهش شدید عمق میدان وضوح در لنزهای تله بلند، کمتر از چهار برابر لنز نرمال است. بهتر است عکس‌های پرتره را با عمق میدان کم (یعنی با دیافراگم باز) تهیه کرد تا پس زمینه محو شده و سوژه با تاکید بیش تری دیده شود.







عکاسی از طبیعت

عکاسی طبیعت به شاخه‌ای از عکاسی گفته می‌شود که گیاهان، جانوران، کوه‌ها یا صخره‌ها به نحوی ثبت شده باشند که در آن هیچ گونه اثر مستقیم یا غیر مستقیمی از حضور انسان دیده نشود، گیاهان پرورش داده شده از سوی انسان، راه‌ها، حیوانات اهلی یا حیوانات وحشی خارج از محیط زیست اصلی خود، هیچ یک در عکس طبیعت نباید حضور داشته باشند.







عکاسی حیات‌وحش

عکاسی حیات وحش، شاخه‌ای از عکاسی است که در آن از حیوانات و جانوران عکسبرداری می‌شود. عکاسی در این سبک، نیاز به دانش بالا و تجربهٔ فراوان در زمینهٔ عکاسی و آشنایی با رفتار حیوانات گوناگون دارد. عکاسان باید توان اثبات طبیعی بودن تصاویر را داشته باشند. عکس از حیوانات در باغ وحش، حیوانات دست آموز و اهلی شده و سایر موارد مشابه عکس طبیعت محسوب نمی‌شوند.

در این نوع عکاسی، دهانهٔ باز لنز برای دستیابی به سرعت بالا و ثبت سوژهٔ در حال حرکت و محو کردن پس زمینه استفاده می‌شود. همچنین عکاسان حیات‌وحش، از لنز تله استفاده می‌کنند بنابراین عکاسان حیات وحش احتیاج به سه‌پایه دارند. آنها همچنین برای این که بتوانند به حیات وحش نزدیکتر شوند احتیاج به وسایلی برای استتار دارند.







عکاسی از مناظر

عکاسی از مناظر، به عکاسی از جهان پیرامون می‌پردازد، حضور انسان یا عناصر انسانی، در این سبک محدودیتی ندارد. توانایی در دیدن زیباترین ترکیب بندی در منظره و تصور آن که در چاپ نهایی چگونه به نظر می‌رسد و همچنین انتقال الهام عکاس به بیننده از مهمترین ماهیت‌های عکاسی منظره‌است. برای عکاسی از چشم‌اندازها، عکاسن معمولاً از لنز واید، سه‌پایه و بسته‌ترین دیافراگم (۱۱ تا ۲۲) برای بدست آوردن بیشترین عمق میدان استفاده می‌کنند.







عکاسی خبری

عکاسی خبری یا فتوژورنالیسم به عکس‌هایی گفته می‌شود که پبام و هدف اصلی آنها خبر رسانی است. عکاسان خبری، همان نویسندگان مقاله و مخبران خبر به وسیله تصویر یا همان عکس هستند. عکاسی خبری هنری است که برای قصه‌گویی عکاسانه به کار گرفته می‌شود تا زندگی را مستند کند. فتوژورنالیسم ما را به عکس‌هایی ارجاع می‌دهد که یک داستان را بیان می‌کند. در فتوژرنالیسم روایت عکس مقدم بر قضاوت است، یعنی باید عکس، دیگران را به قضاوت بکشد. در فتوژرنالیسم، عنوان یا مضمون مقدم بر عکس است و باید به مخاطبان و بینندگان و کسانی که داوری می‌کنند کمک کند تا خودشان داستان یا ماجرا را کشف کنند.







عکاسی شب

عکاسی در شب، به عکاسی در فضای آزاد در ساعات شب گفته می‌شود. در عکاسی شب، معمولاً از دیافراگم‌های بسته و زمان‌های نوردهی طولانی استفاده می‌کنند. البته در این حالت عمق میدان کم می‌شود. در این حالت، نقاط نورانی متحرک به‌صورت خطی نورانی و کشیده در صفحهٔ حساس عکاسی ثبت می‌شوند. اما اگر مدت نوردهی افزایش یابد، نویز تصویر نیز زیاد می‌شود.







عکاسی ماکرو

عکاسی ماکرو شاخه‌ای از عکاسی است که از نمای نزدیک و بطور معمول از سوژه‌های کوچک عکسبرداری می‌کند. بطور کلاسیک، سوژهٔ موجود در یک تصویر ماکرو بزرگ‌تر از اندازهٔ آن در طبیعت است. به هر شکل امروزه تصویر برداری ماکرو، تهیه تصویر از سوژه در ابعاد بزرگتر و واضح‌تر از آن چیزی است که در حیات دیده می‌شود.







عکاسی صنعتی

عکاسی صنعتی یکی از شاخه های عکاسی می باشد که به سفارش یک سازمان صنعتی صورت می پذیرد و به ثبت فرایندهای تولید ، محصولات ، سازمان کار ، کارکنان و یا تجهیزات سازمانی می پردازد. عکس صنعتی ممکن است با مقاصد داخلی ( به عنوان مثال اداری و یا روابط صنعتی ) و یا خارجی ( به عنوان مثال تبلیغات یا روابط عمومی ) بکار گرفته شود.
12:38 pm
کاربرد الگوریتم‌ها

در دنیای امروز مسائل فراوانی وجود دارد که می‌توان توسط الگوریتم‌ها راه حل‌های مناسب و بهینه‌ای برای آنها ارائه نمود. استفاده از الگوریتم‌ها در این مسائل باعث صرفه جویی در وقت و هزینه شده و راهکارهای نوینی را پیش رو قرار می‌دهد. از جمله:






- پزشکی و ژنتیک:

یکی از کاربردهای مهم الگوریتم‌ها در ژنتیک و در پروژه ژن‌های انسانی است. هدف پروژه ژن انسان، شناسایی تمام ۱۰۰۰۰۰ ژن در DNA انسان، تعیین دنباله‌ای از ۳ بیلیون جفت پایه شیمیایی DNA انسان، ذخیره این اطلاعات در پایگاه داده‌ها و تولید ابزارهایی برای تحلیل داده‌ها است که هر یک از این مراحل نیازمند الگوریتم‌هایی حرفه‌ای است و این خود تصدیقی بر اهمیت الگوریتم‌ها در پیشرفتهای پزشکی و ژنتیکی است. -

-اینترنت:

کاربرد دومی که برای الگوریتم‌ها ذکر می‌کنیم در اینترنت است. اینترنت موجب می‌شود افراد در سراسر جهان به سرعت به حجم زیادی از اطلاعات دستیابی داشته باشند و این مهم تحقق نمی‌یابد مگر به مدد الگوریتم‌های هوشمندی که برای مدیریت و دست کاری این اطلاعات استفاده می‌شود. مصداقهایی از کاربرد الگوریتم‌ها در فضای اینترنت شامل یافتن مسیرهای خوب برای ارسال داده‌ها و استفاده از موتورهای جستجو برای یافتن سریع صفحاتی است که اطلاعات مورد نظر در آن قرار دارد.

- تجارت الکترونیک:

کاربرد سوم الگوریتم‌ها در تجارت الکترونیک است. تجارت الکترونیک موجب می‌شود کالا‌ها و سرویس‌ها بطور الکترونیکی مذاکره و مبادله شوند. برای تحقق این امر توانایی نگهداری اطلاعاتی مانند شماره کارت اعتباری، کلمه‌های عبور و صورت حساب‌های خصوصی بانک‌ها ضروری است به همین دلیل از فناوری‌هایی نظیر رمز نگاری کلید عمومی و امضاهای دیجیتال برای نگهداری موارد ذکر شده استفاده می‌شوند که همگی مبتنی بر الگوریتم‌ها و تئوری اعداد هستند و این کارایی الگوریتم را در این حوزه نشان می‌دهد.

- صنعت:

چهارمین موردی که می‌توان برای کارایی الگوریتم‌ها ذکر کرد، در صنعت و تجارت است. در صنعت و تجارت لازم است منابع نادر با سودمند ترین روش تخصیص یابند بطوری که با منابع محدود بتوان به سود ماکزیمم و هزینه مینیمم رسید. برای دستیابی به این اهداف و حل مسئله‌هایی از این دست الگوریتمی نظیر الگوریتم برنامه ریزی خطی کارایی دارد که نتیجه بهینه را حاصل می‌کند.

- مسیر یابی:

کاربرد پنجم الگوریتم‌ها در مسیر یابی بالاخص یافتن کوتاهترین مسیرهای موجوداست. اگر هدف ما تعیین کوتاه ترین مسیر از یک تقاطع به دیگری در یک نقشه جاده‌ای باشد در حالی که تعداد مسیر‌های ممکن زیاد است، برای رسیدن به راه حل بهینه باید از الگوریتم‌های مسیریابی استفاده بنماییم. چنین مسئله‌ای را اگر بصورت گراف مدل سازی کنیم می‌توانیم به کمک الگوریتم‌های متعدد مسیر یابی مانند پریم، دایکسترا، فلوید و... بسته به خواسته‌های مسئله و نوع گراف کوتاه ترین مسیر را از یک راس به راس دیگر گراف پیدا نموده و بدین ترتیب مسئله را حل کنیم.

- مرتب سازی:

ششمین کاربردی که برای الگوریتم‌ها ذکر می‌کنیم در مرتب سازی است. برای مثال در طراحی‌های مکانیکی که بر حسب کتابخانه‌ای از قطعات داده شده‌اند و هر قطعه ممکن است شامل نمونه‌هایی از قطعات دیگر باشد اگر بخواهیم قطعات را به ترتیب لیست کنیم بطوری که هر قطعه قبل از قطعه‌ای که از آن استفاده می‌کنند، قرار گیرد بایدازالگوریتم‌های مرتب سازی مانند مرتب سازی موضعی استفاده کنیم. البته کاربرد الگوریتم‌ها در مرتب سازی و مدل‌های آن تنها محدود به این مثال و این مدل نمی‌شود بلکه الگوریتم‌های مرتب سازی مدل‌های فراوانی دارند از جمله مرتب سازی ادغامی، مرتب سازی درجی، مرتب سازی انتخابی و... که هر کدام کاربردهای جداگانه و متنوعی مختص خود دارند.

علاوه بر کاربردهای ذکر شده، کاربردهای دیگری نیز برای الگوریتم‌ها در ریاضیات و سایر زمینه‌های علمی وجود دارد مانند یافتن طویل ترین زیر دنباله مشترک، یافتن پوش محدب نقاط، انتخاب بهینه فعالیت‌ها و بسیاری نمونه‌های دیگر.





الگوریتم انتخاب
در علوم کامپیوتر، یک الگوریتم انتخاب، یک الگوریتم برای پیدا کردن kامین کوچک‌ترین عدد در یک لیست است (به چنین عددی kامین مرتبه آماری گفته می‌شود). این الگوریتم‌ها شامل پیدا کردن کمینه، بیشینه و میانه‌ی عناصر است. الگوریتم‌های انتخاب از O(n)، که در بدترین حالت خطی اند، وجود دارند. انتخاب یکی از زیرمسئله‌های مسائل پیچیده‌تر مانند مسئله نزدیک‌ترین همسایه و مسئله یافتن کوتاهترین مسیر است.




انتخاب با مرتب‌سازی
انتخاب ممکن است با مرتب کردن لیست و سپس استخراج عنصر دلخواه، به مرتب سازی تبدیل شود. این روش زمانی کارآمد است که به تعداد زیادی انتخاب از یک لیست نیاز باشد، در موردی که تنها یک بار مقداردهی می‌شود، یک مرتب سازی پرهزینه، همراه با چندین عمل استخراج کم‌هزینه انجام می شود. در حالت کلی، این روش نیازمند زمان O(n log n) است، که در آن n طول لیست است.



الگوریتم‌های کمینه/بیشینه خطی
الگوریتم‌های خطی، از لحاظ زمانی، برای پیدا کردن کمینه‌ها یا بیشینه‌ها این گونه کار می‌کنند که روی لیست تکرار می‌کنند و رد کمینه یا بیشینه تا هر بار نگه می‌دارند.



الگوریتم کلی انتخاب غیر خطی
با کمک ایده‌های مورد استفاده در الگوریتم‌های کمینه/بیشینه، ما می‌توانیم یک الگوریتم کلی ساده، ولی ناکارامد برای پیدا کردن کوچک‌ترین kامین یا بزرگ‌ترین k عنصر در یک لیست بدهیم، که نیاز به زمان O(k) دارد، که وقتی k کوچک باشد مؤثر است. برای انجام دادن آن، ما به سادگی کوچک‌ترین/بزرگ‌ترین مقدار را می‌یابیم و آن را به ابتدای بازه حرکت می‌دهیم تا به اندیس دلخواه برسیم. این کار را می‌توانیم به عنوان یک مرتب سازی انتخابی ناتمام ببینیم.





الگوریتم کلی انتخاب به صورت خطی - الگوریتم میانه‌ی میانه‌ها

یک الگوریتم با بدترین زمان اجرای خطی برای حالت کلی انتخاب kامین بزرگ‌ترین عنصر توسط بلوم، فلوید، پرت، ریوست و ترجان در مقاله سال ۱۹۳۷ با نام «حدود زمانی برای انتخاب» منتشر شد. گاهی از این الگوریتم با نام BFPRT، که حروف اول نام خانوادگی نویسندگان آن است، یاد می‌شود. این الگوریتم بر اساس الگوریتم انتخاب سریع کار می‌کند و هم‌چنین به نام الگوریتم میانه‌ی میانه‌ها شناخته می‌شود.

هرچند انتخاب سریع به طور میانگین دارای زمان خطی است، زمانی که محورهای ضعیفی استفاده شوند می‌تواند به زمان از درجه دوم نیاز پیدا کند (حالتی را در نظر بگیرید که در هر گام، محور در نزدیکی کوچک‌ترین عنصر انتخاب شود). راه چاره برای اینکه آن را به O(n) در بدترین حالت تبدیل کنیم این است که به طور پیوسته در هر گام محور مناسب را بیابیم. یک محور خوب باید به گونه‌باشد که بتوانیم اطمینان داشته باشیم نسبت ثابتی از عناصر قبل از آن و بعد از آن قرار بگیرند.

الگوریتم انتخاب لیست را به گروه‌هایی شامل پنج عنصر تقسیم می‌کند.(فعلاً با عناصر باقی‌مانده کاری نداریم). سپس، برای هر گروه پنج‌تایی، میانه محاسبه می‌شود (اگر آن پنج مقدار داخل ثبّات‌ها بارگذاری شوند و مقایسه شوند، عملیات به طور بالقوه بسیار سریع انجام می‌شود). (اگر مرتب‌سازی به صورت درجا صورت گیرد، این میانه‌ها به یک بلوک پیوسته در لیست منتقل می‌شوند.) انتخاب به صورت بازگشتی در این زیرلیست‌های n/5 عنصری فراخوانده می‌شود تا مقدار واقعی میانه یافت شود. سرانجام، میانه‌ی میانه‌ها به عنوان محور انتخاب می‌شود.





ویژگی‌های محور
محور انتخاب شده، از نیمی از عناصر لیست میانه‌ها بزرگ‌تر و از نیمه‌ی دیگر کوچک‌تر است، به طوری که در هر نیمه n/10 عنصر (1/2 * (n/5)) قرار دارند. هر کدام از این عناصر، میانه‌ی ۵ عنصر است و از ۲ عنصر کوچک‌تر و از ۲ عنصر در خارج از بلوک بزرگ‌تر است. پس، محور کوچک‌تر از 3(n/10) عناصر خارج از بلوک است، و از 3(n/10) عنصر دیگر خارج از بلوک بزرگ‌تر است. بنا بر این، میانه‌ی انتخاب شده، عناصر را به مکانی بین 30%/70% و 70%/30% تقسیم می‌کند. این کار به ما اطمینان می‌دهد که رفتار الگوریتم در بدترین حالت خطی است.



اثبات زمان اجرای (O(n
محاسبه‌ی میانه به طور بازگشتی، در بدترین حالت از درجه خطی بیشتر نخواهد شد، زیرا لیست میانه‌ها ۲۰٪ از اندازه‌ی لیست است، در حالی که فراخوانی بازگشتی دیگر حداکثر روی ۷۰٪ لیست لیست اجرا می‌شود.زمان (O(n ناشی از عمل افراز کردن است ( ما هر عنصر را به تعداد دفعات ثابتی ملاقات می‌کنیم، تا آن‌ها را به گروه‌های (O(n دسته‌بندی کنیم و هر میانه را در زمان (O(n به دست آوریم.




تحلیل الگوریتم‌ها

موضوع تحلیل الگوریتم‌ها تعیین میزان منابعی است که برای اجرای هر الگوریتم لازم است. منابعی مثل زمان، حافظه، پهنای باند ارتباطی، یا سخت افزار رایانه در نظر گرفته می‌شوند. کارآئی یا پیچیدگی هر الگوریتم را با تابعی نشان می‌دهند که تعداد مراحل لازم برای اجرای الگوریتم را برحسب طول داده ورودی، یا میزان محل‌های لازم حافظه را بر حسب طول داده ورودی نشان می‌دهد. زمان متوسط برای بررسی هر الگوریتم با O نشان داده می‌شود غالباً مشاهده می‌شود که یک مسئله را با استفاده از چندین تکنیک مختلف می‌توان حل نمود ولی فقط یکی از آنها به الگوریتمی منجر می‌شود که از بقیه سریعتر است.

در علم کامپیوتر، تجزیه و تحلیل الگوریتم تعیین مقداری از منابع است (مانند زمان و ذخیره سازی) که لازم است آنها را اجرا کند. اکثر الگوریتم‌های طراحی شده برای کار با ورودی‌های با طول اختیاری تولید می‌شوند معمولاً بازده و یا در حال اجرا بودن یک الگوریتم است که به عنوان یک تابع در رابطه با طول ورودی معین را به تعداد مراحل اعلام کرد (پیچیدگی زمانی) و یا مکان‌های ذخیره سازی (پیچیدگی فضا). تجزیه و تحلیل الگوریتم بخشی مهم از تئوری پیچیدگی محاسباتی گسترده تر است، که فراهم می‌کند برآوردهای نظری برای منابع مورد نیاز هر الگوریتم که حل با توجه به محاسبات مشکل است این برآوردها ارائه بینشی به جهت معقول برای جستجوی الگوریتم‌های کارآمد است.

در تجزیه و تحلیل نظری الگوریتم آن که مشترک است به منظور برآورد پیچیدگی خود در معنای تقریبی به عنوان مثال، به منظور برآورد تابع پیچیدگی برای ورودی خودسرانه بزرگ. نماد O بزرگ، امگا و تتا برای این منظور استفاده می‌شود. مثلاً گفته می‌شود، جستجوی دودویی به اجرا در تعدادی از مراحل، متناسب با لگاریتم طول این لیست در حال جستجو و یا در (O(log(n). معمولاً تخمین‌های تقریبی استفاده می‌شود چرا که پیاده سازی‌های مختلف از همان الگوریتم ممکن در کارایی متفاوت است. با این حال بازده هر دو "منطقی" پیاده سازی یک الگوریتم داده شده ضرب در یک ضریب ثابت به نام ثابت مخفی مرتبط است.

اغلب مهم است که بدانید برای چه مقدار از یک منبع خاص (مثل زمان یا حافظه) تئوری مورد نیاز برای یک الگوریتم داده شده. روش‌ها برای تجزیه و تحلیل الگوریتم‌های توسعه یافته برای به دست آوردن مقادیر کمی (تخمین)؛به عنوان مثال، الگوریتم مرتب سازی در بالای یک زمان مورد نیاز از (O(N، با استفاده از نماد گذاری O بزرگ با n به عنوان طول لیست در تمام زمانها در الگوریتم باید دو مقدار را به خاطر داشته باشید: بیشترین تعداد تا کنون و موقعیت فعلی در لیست ورودی. لذا گفته شده است که فضای مورد نیاز از (۱)O است در صورتی که برای ذخیره، شماره‌های ورودی شمارش نمی‌شود یا (O(n آن شمارش شده.
ساعت : 12:38 pm | نویسنده : admin | مطلب قبلی | مطلب بعدی
الگوریتم | next page | next page